
The correlation method
...is really just the application of a textbook example for quantum mechanics

Basic concepts

◼ Separation of a vector wave function into space dependent and time dependent factors

A  standard  method  taught  in  introductory  courses  of  both  classical  electrodynamics  and  quantum

mechanics is the separation of a function that depends on several coordinates into a product of functions,

each of which depends only on a subset of the coordinates. 

It is particularly common to separate stationary wave functions, i.e., functions whose observable character

istics remain essentially the same over the period of observation, in the product of a function depending

only  on  the  spatial  coordinates  and  a  time  dependent  function:

http : // pauli.uni - muenster.de menu  Lehre  quant - skript  node11.html

 In the case of complex wave functions, the complex nature of the wave function can be entirely absorbed

into the time dependent function. 

The  standard  examples  in  quantum  mechanics  are  stationary  states,  e.g.  in  a  box  potential

http : // pauli.uni - muenster.de menu  Lehre  quant - skript  node13.html, 

a harmonic oscillator http : // pauli.uni - muenster.de menu  Lehre  quant - skript  node31.html, 

or a hydrogen atom http : // pauli.uni - muenster.de menu  Lehre  quant - skript  node60.html; 

the standard example in classical electrodynamics is the cavity resonator. 

It is therefore obvious to consider an electromagnetic wave as a product of a time dependent function and

a (real vector) function dependent on space. 

Furthermore, it is obvious to consider the space dependent component function of an essentially time

invariant function at a finite set of locations that do not change substantially within the time of observa-

tion to be essentially constant. 

◼ Decomposition of a vector wave function into coordinates

The basic formalism of a vector valued function described as a plurality of scalar valued function is taught

in introductory university courses of physics, mathematics, and engineering, at least in Germany. 

◼ Coordinate transformation in space

Coordinate transformations in space, in particular rotations, are part of the basic curriculum in university

courses  of  the  subjects  mentioned

above

http : // pauli.uni - muenster.de menu  Lehre  quant - skript  node43.html. 

This includes rotations in more than three dimensions, e.g., in special relativity

http://pauli.uni-muenster.de/Lehre/Skripten/Eckelt/edynrel.pdf. 

◼ Eigenvalues and eigenfunctions

Eigenvalues as observables and eigenvectors as the wave functions corresponding to the observables are

an  elementary  concept  obvious  to  anybody  knowledgeable  in  classical  quantum  mechanics:

http : // pauli.uni - muenster.de menu  Lehre  quant - skript  node35.html, 

in particular of the Heisenberg matrix mechanics variety developed in the 1920s. 
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◼ The statistical operator formalism

A concept of particular importance for the method of detecting electromagnetic field vectors by correla-

tion  is  the  statistical  operator,  which  is  taught  in  basic  courses  of  quantum  mechanics  or  statistical

physics, e.g., http : // pauli.uni - muenster.de menu  Lehre  quant - skript  node99.html.

At the time the concept of the statistical operator is introduced, it is obvious to students following the

course that for a pure state, i.e. a state with non-vanishing off diagonal coherence terms, a coordinate

transformation can be found that transforms the statistical operator into diagonal form. 

◼ Cavity radiation as the standard example of statistical physics

The standard example to introduce the concept of quantum statistics is the electromagnetic radiation in a

cavity. The mathematically simplest, and therefore most obvious for somebody skilled in the art, treat-

ment  is  the  decomposition  into  Cartesian  coordinates

http : // saftsack.fs.uni - bayreuth.de  thermo  elek.html. 

As in the correlation method developed by me as an obvious application of the concept, any mode of the

cavity resonator is  described as coherent superposition of  the projection of  the wave function on the

coordinate directions. 

A textbook example of the basic concepts

We will make heavy use of the notation introduced by the electrical engineer and physicist P.A.M. Dirac. For definitions, consult a textbook on introductory quantum

mechanics. 

◼ Statistical operator for a stationary (electro-)magnetic field

We begin with the definition of the statistical operator

ρ ≡ ∑α α〉 pα 〈α
of  an  ensemble  of  pure  states,  indexed  by  α.  (see

http : // pauli.uni - muenster.de menu  Lehre  quant - skript  node98.html for the textbook definition).

The positive real coefficients pα  correspond to a probability of a certain state, or in case of many particle

systems, the amplitude of a mode of the field. 

If the vectors are assumed to describe photons, we can represent the photon density by the proportional

magnetic field, i.e., 

ρx→, t ≡ ∑α B
→
αx→,t

B→αx→,t
 B→α

2x→, t  B
→
αx→,t

B→αx→,t
= ∑α B

→
αx→, t B→αx→, t

Since, for our simple and obvious example, we don't want to be bothered by the dynamics of the electro-

magnetic field, we'll assume that the electromagnetic field is essentially stationary in the time interval

we're observing it, i. e., we can factor the field into a space dependent and a time dependent component. 

B→αx→, t ≡ B→αx→ ⊗ βα(t)

If we're interested in classically observable electromagnetic fields, we can make B→αx→  a real vector

valued function. For the time being, we'll allow βα(t)〉to be a complex scalar function. 

We'll also assume that we'll stay essentially in one place during one measurement, so we can drop the
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index x
→

 in our further discussion. 

To take care of the time dependent part of the wave function, we'll define 

∀ α : 〈βα(t) βα(t)〉 ≡ ∑t βα*(t) βα(t) ≡ N

and get on with the discussion. 

We can always do this sort  of normalization, because we can move a real constant that depends neither on space nor time between the space and the time

dependent factors.

Looking at the space dependent variable in just one point in space, we're left with a constant vector B
→
α for

each state α. 

So, each state is represented by a constant field vector and a normalized time-dependent part. 

As next step, we get rid of the time variable by taking the trace over the time variable:

ρ = ∑α B
→
α B→α ⊗ 〈βα(t) βα(t) 〈βα(t) βα(t) = N ∑α B

→
α B→α

Now let's assume that we have a pure state, i.e., only one non-zero field vector B
→
ℵ. We can find an orthonor

mal basis

ϵ→i, i ∈ {1, 2, 3} with ϵ→j ϵ→i = δi j

such that the first basis vector is parallel to the field vector:

 ϵ→i B
→
ℵ = B

→
ℵ δi j

In this representation, the matrix elements of the statistical operator are

ϵ→j ρ ϵ→i = N ϵ→j B
→
ℵ B→ℵ ϵ→i = N B

→
ℵ

2 δ1 i δ1 j

or, written as a matrix,

 ρ =
N B

→
ℵ

2
0 0

0 0 0

0 0 0

We can transform the basis into another orthonormal basis e→i, i ∈ {1, 2, 3} with e→j e
→

i = δi j  by

an orthogonal transformation, i.e., a rotation. 

Since, by construction, B
→
ℵ ∥ ϵ→1, the vector B

→
ℵ can be expressed in the e→i basis as

 B
→
ℵ = N B

→
ℵ

2

N

e→1 ϵ→1
e→2 ϵ→1
e→3 ϵ→1

In this basis, the matrix elements of the statistical operator are

corrmethod.nb   3



e→j ρ e
→

i = N e→j B
→
ℵ B→ℵ e

→
i ≡ N Bj Bi

i.e., the elements of the positive definite, symmetric correlation matrix

 ρ = N

B1
2 B1 B2 B1 B3

B1 B2 B2
2 B2 B3

B1 B3 B2 B3 B3
2

A method that transforms this matrix into diagonal form will yield both the eigenvalue B
→
ℵ

2
 and the eigen-

vector 

e→1 ϵ→1
e→2 ϵ→1
e→3 ϵ→1

 required to determine B
→
ℵ.

Methods to diagonalize a positive definite, symmetric matrix are included in college courses on linear

algebra and/or numerical  mathematics  and therefore a  well  known part  of  the physics  curriculum at

German universities.  

If several states (i.e. fields in several directions that are not zero all the time) are present simultaneously,

the diagonalized statistical operator will have more than one non-zero diagonal matrix element. 

However,  if  we are  interested in  the direction of  the largest  field  magnitude,  this  direction obviously

corresponds to the eigenvector to the largest eigenvalue. 

The statistical operator is introduced in a context in which the concept of a Hilbert space has already been

introduced.  Therefore  we  can  safely  assume  that  the  generalization  of  this  example  for  more  than  3

dimensions, by defining states by the essentially stationary magnetic field and/or projections on certain

spatial directions thereof at several points in space, is an obvious generalization of the trivial example of a

statistical operator detailed above.  

◼ A closer look at the time dependent factor

The normalization of the time dependent factor β(t)〉 above was chosen such that a simple summation

of spatial correlation matrices ρ at N  different points in time (that need not be spaced regularly) adds up

to N. This makes sense since a sum of measurements of a stationary magnetic field is essentially propor-

tional to the number N of measurements. 

The set of time dependent functions β(t)〉 form a Hilbert space. For this Hilbert space, several orthonor-

mal sets of basis vectors exist, e.g., the unit impulse functions {δ(t - t0)〉}t0∈ℝ and the Fourier decom-

position  into  real  waves  {cos(2 π f t)〉}f∈ℝ ⋃ { sin(2 π f t)〉}f∈ℝor  complex  waves

{exp(2 π ⅈ f t)〉}f∈ℝ. 

The statistical operator whose representation in space has been discussed above can be restricted on a

class of time dependencies by projection of the time dependent factor on a subspace of the Hilbert space

of scalar time dependent functions, i.e. on a finite subset of basis vectors. An obvious example, familiar

from the example of  electromagnetic radiation in a cavity used to introduce the concept of  quantum

statistics, is the projection of discrete frequencies. As the simplest case, we shall project on one frequency

only,  i.e.  one  complex  basis  vector  exp(2 π ⅈ f t)〉  or  two  real  basis  vectors

{cos(2 π f t)〉, sin(2 π f t)〉}.

The statistical operator projected on harmonic signals of one frequency f  becomes
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ρf  = ∑α B
→
α B→α ⊗ 〈βα(t) exp2 π ⅈ f t exp2 π ⅈ f t βα(t) = β˜α*f  β˜αf  ∑α B

→
α B→α

where  β˜αf  ≡ exp2 π ⅈ f t βα(t)is  the  complex  Fourier  coefficient  of  βα(t)  for  frequency  f  and  *

denotes the complex conjugate. 

Following the argumentation above, the magnitude and orientation in space of largest periodic signal at

frequency f  can be found by diagonalizing a Hermitian matrix

 ρ = N
B1

* B1 B1
* B2 B1

* B3

B2
* B1 B2

* B2 B2
* B3

B3
* B1 B3

* B2 B3
* B3

with real eigenvalues and complex eigenvectors. The phase of the eigenvector components denote the

phase of the periodic function e2 π ⅈ f t . 

◼ Canon cancricans

We can also apply the concept above in reverse and diagonalize the time dependent part of the projection

of the statistical operator on a finite set of spatial components at a finite set of locations and one particu-

lar frequency  (this time we'll represent it in a real basis). 

ρ = ∑i e→i⊗ cos2 π f t
sin2 π f t B

→
ℵ(t) B→ℵ(t) e

→
i ⊗  cos2 π f t sin2 π f t  =

∑i

cos2 π f t Bi(t) Bi(t) cos2 π f t cos2 π f t Bi(t) Bi(t) sin2 π f t
sin2 π f t Bi(t) Bi(t) cos2 π f t sin2 π f t Bi(t) Bi(t) sin2 π f t ≡

B
→

I · B
→

I B
→

I · B
→

Q

B
→

Q · B
→

I B
→

Q · B
→

Q

We can also represent this projection of the statistical operator on waves with frequency f  on another

basis. 

Let's take, for example, use a representation that distinguishes between time-invariant, and time-variant

components of the statistical operator. 

For starters, let's observe that the time dependence of all non-vanishing components of the projection of

the  statistical  operator  must  have  a  time  dependence  that  results  from  the  products

cos2 π f t cos2 π f t = 1

2
+ cos(4 π f t)

2
,  cos2 π f t sin2 π f t = sin(4 π f t)

2
,  and

sin2 π f t sin2 π f t = 1

2
- cos(4 π f t)

2
.

LastSolve d + c

2
⩵ BI BI,

s

2
⩵ BI BQ,

d - c

2
⩵ BQ BQ, c, d, s

Simplifyc2 + s2 /. %

c → BI2 - BQ2, d → BI2 + BQ2, s → 2 BI BQ
BI2 + BQ22

Obviousness

The correlation method for detecting the magnitude and orientation of electromagnetic vector fields of

the form B
→x→, t ≡ Β→x→ · β(t), at a location x

→
 with essentially arbitrary temporal behavior β(t) is a straightfor-
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ward application of the standard syllabus of theoretical physics taught at German universities, and thus

obvious to anybody skilled in this art (i.e., knowledgeable of German college level physics). 

◼ Competent jurisdiction

The method may not appear obvious to citizens of a country who aren't aware of quite a few obvious

facts, for example, that confirming in office a government, the members of which should not be hanged

for crimes against peace, war crimes, and crimes against humanity, if only for the reason that the death

penalty is an unacceptable form of punishment for any civilized country, constitutes a serious impedi-

ment to conducting business in a spirit of mutual trust and cooperation, and thus generates unnecessary

costs and other obstructions of business that would have been entirely avoidable otherwise. 

It should also be noted that an electorate that confirms in office an administration that considers a war of

aggression an acceptable means of policy proves clearly that it is either incapable of recognizing or simply

refuses to recognize certain most elementary facts of nature and civilization which are prerequisite to

understanding the above argumentation. As a necessary consequence, any jurisdiction that consists of or

derives its authority from said electorate must not be considered nor made appear to be competent to

judge the novelty or  obviousness of the idea presented herein. 

Nonetheless, the argument of obviousness (according to US judicial criteria) holds for citizens of civilized

countries skilled in the art (but not of extraordinary ability, as determined by the criteria of US immigra-

tion jurisdiction), as I have detailed in this document. 
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